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We study analytically the response of a two-level quantum system to a certain 
class of time-dependent quasiperiodic perturbations generated by a Fibonacci 
sequence. We show that the quasi-energy spectrum (Fourier transform of the 
evolution operator) generically is not a denumerable sum of delta functions. 
Hence the response is not quasiperiodic. Several numerical investigations 
(Poincar6 sections, polarization fluctuation, etc.) suggest an intermediate kind 
of behavior between quasiperiodic and chaotic. 
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1. I N T R O D U C T I O N  

A b o u n d e d  q u a n t u m  system responds  quas iper iod ica l ly  to an external  
t ime-dependen t  per iodic  dr iv ing force. This behav io r  is due to the 
invar iance  of the to ta l  H a m i l t o n i a n  under  t r ans la t ion  in t ime by the per iod  
of the dr iv ing force. The  F loque t  theorem (1) guarantees  that  every wave 
funct ion I ~ ( t ) )  can be wri t ten as a l inear  combina t i on  of vectors  of the 
form e i~ I~b~(t)), where I~b~(t)) are periodic,  independent ,  and  span the 
Hi lber t  space. F o r  a b o u n d e d  system, this implies  that  the f requency set 
{cos } is denumerab le ,  and  hence I ~ ( t ) )  is quas iper iodic .  

Once  a quas iper iod ic  dr iv ing is appl ied,  the system is no longer  
invar ian t  under  t ime t rans la t ion ,  and  a genera l iza t ion  of the F loque t  
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theorem is not ensured to exist. Therefore, the problem is far more subtle, 
and the response of the system is not necessarily quasiperiodic, and may to 
some extent show chaotic features. 

Recent experimental (2) and numerical (3 7) work has revived interest in 
the behavior of quantum systems driven by nonperiodic perturbations. 
Measurements of the ionization of high-n hydrogen atoms induced by 
bichromatic microwave fields have been recently reported. (2) The ionization 
data show typical quantum features, which can be interpreted to imply that 
in this problem the response is quasiperiodic. (7) Numerical studies try to 
characterize the response by analyzing the power-spectrum or various 
correlation functions of the solution. These numerical experiments provide 
some evidence for the existence of a transition from a quasiperiodic to a 
chaotic regime, (3'4) but the numerical work is fraught with nontrivial 
problems, and the extraction of unambiguous statements from the 
numerics requires great care. (5'6~ 

The purpose of the present paper is to report on an analytical treat- 
ment of a class of quasiperiodically driven two-level systems. We show that 
in this case the Fourier transform of the evolution operator is not a 
denumerable sum of delta functions. This analytical result is supplemented 
with some numerical evidence that the evolution exhibits some inter- 
mediate kind of behavior between quasiperiodic and chaotic. We believe 
that, in spite of the fact that we discuss a rather restricted and schematic 
model, the present results contribute toward an understanding of the 
response of a general quantum system to a quasiperiodic driving force. 

We consider a two-level system with a Hamiltonian given by 

H= Eaz + g(t) ax ( la)  

with a driving perturbation of the form 

g(t)=gv(k)(t) for t e [ k - l , k [  ( lb)  

where v(k) can be either 0 or 1, and g0,1(t) are two arbitrary functions 
defined in the unit t interval. The function g(t) can be made periodic (P), 
quasiperiodic (QP), or random (R) by choosing the sequence v(k) as a P, 
QP, or R sequence of the symbols 0 and 1, respectively. 

The Fourier transform of the evolution operator 

G(t, O)= Texp { - i  f~ H(t') dt'} 

is defined by 

(~(co) = lim e~G(t, O) dt (2) 
n ~ o o  

r l ~  + 0  
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It takes the form 

C(co)= ~ ei~~ gv(k)'--gv(1) (3) 
k=0 

where Uo,1 is the unitary evolution operator for the Hamiltonian H on a 
unit time interval, and 

Vo, l(e))= f~ dt e~~ {-i  ;~ H(t') dt'} (4) 

The nature of the solution (P, QP, or chaotic) is entirely determined 
by the nature of G(~o). For further reference, we define 

and 

so that 

W #  = Uv(k) Uv( k _  l) . .  . Uv(l) (5) 

P 
io)k V Cp(O))= ~ e v(~+l)(~o) W~ (6a) 

k=0 

G(co)= lira (~p(co) (6b) 
p~oO 

Noting that, in the random case, the response is trivially chaotic, we 
shall discuss separately the P and QP driving forces. 

. PERIODIC DRIVING 

If the sequence v(k) is periodic with a period 2, it follows from (3) that 

(7) G(co) = (~;~(co) + ei~~ Vv(1)(e))] W;~ 

which can be solved to give 

G ( ~ ) =  Vv(1)((.o) + EG2(do)- Vv(1)((J))](1 - e i ; t ~  - 1  (8) 

W;. is a unitary matrix with eigenvalues e -+ie. Since (~;.(co) and V~o)(co ) are 
regular by construction [see (4) and (6)], G(co) has pole singularities at 

1 
col+) =~  (-r ~ + 2x/) (/integer) (9) 

This is the expression of the Floquet theorem in the present context. Note 
that, when the period 2 increases, the support of ~(co) becomes denser, but 
it always consists of a denumerable set of isolated points. 
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3. QUASIPERIODIC  DRIV ING 

We now discuss a particular QP sequence of functions g,,(~)(t), namely 
the Fibonacci sequence, which is often used as a prototype of one-dimen- 
sional quasicrystals. (a-j~ This sequence is constructed by the following sub- 
stitution ("inflation rule"). Let FL stand for the Lth  Fibonacci number, 
defined by the recursion FL = FL 1+ FL_2 (Fo = 0; F I = 1). We define a 
sequence of words ML of lengths FL, composed of the letters 0 and 1. 
Starting with M1 = {0} and M2-- {1 }, we construct the next words recur- 
sively by the concatenation rule 

M L +  1 = M L M L -  1 (10) 

The infinite sequence of indices v(k )  needed for the definition of the 
driving function g( t )  is given by the word M L when L--* co. It is well 
known that this sequence is Qp.(8-lO) Let us prove it by an alternative 
method which will be useful in the following. This approach, due to 
Bombieri and Taylor, ~ has also been used recently in the study of some 
one-dimensional geometrical models. (~2) 

For the sake of simplicity we assume that the building blocks go,l(t)  
have the form 

go, l ( t )  = ao, 17(t) (11) 

where ao,~ are constants, and 7(t) is defined in the unit t interval. 
The Fourier transform of g( t )  is given by 

~(~)=~(r ~ a~(~)e i~ (12a) 
k--1 

where 

Consider 

;o y ( o )  = e -i~ dt ei~ (12b) 

FL 
gL(~O)= ~ a~(k)e '~k (13) 

k=l 

It satisfies the recurrence relation 

go+ 1(r = gL(~~ + ei~FLgL- ~(r (14) 

due to the concatenation rule (10). Following the argument of Bombieri 
and Taylor, (m we consider 

.fL(O~) = ~ L ( o ) I F L  (15) 
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which satisfies 

( 1 fL+~(co)= \  1+ Fr  ] FL 

If, for a certain value of co, the limit f (co)=l imr~oo fL(co) exists, then it 
must satisfy the equation 

f(co) =f(co)(1 +~-1)  1 (1 + z  -1 lira e e~rL) (16b) 
L ~ o o  

Here, z = (,,//5 + 1)/2 = l i m c ~ o  FL+I/FL is the golden mean. Thus, all the 
points such that f(co) ~ 0 must satisfy 

lira ef~ 1 (17) 
L ~ o o  

A standard result then gives co = 2~z(j+ kr), where j and k are integers. 
This is a denumerable set of points, and therefore ~(co) is a denumerable 
sum of delta functions, which proves the QP nature of g(t). 

By a proper choice of the functions go, l(t), one can make g(t) to be 
infinitely differentiable on the real axis (it cannot be analytic because of the 
concatenation procedure). Thus, the amplitudes of the delta functions in 
~(co) at c o = 2 g ( j + k z )  (which are independent of j )  can be made to 
decrease faster than any desired power of k. 

We now return to the discussion of the nature of the Fourier trans- 
form of the evolution operator ~(co). We define 

(])L(O)) = G L ( g O )  - -  Vv(1)(o)  ) (18) 

and, in analogy with the derivation of Eq. (14), we have 

q) L +  1((D) = (~0L(gO) -~- ei~FLrPL- 1(0~) WFL (19) 

Define now 

Then, 

Let 

oPt(co) = cp L(co )/Fc (20a) 

q~(co)= lim q~L(~) (20c) 
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Then 

~((O)=~(09)(l+z -1) 1(1+~'-1 lim ei~ (20d) 
L ~ o o  

As was argued above, ~(co) r 0 if, and only if, l imL~ ~ ei~~ has a 
(left) eigenvalue equal to 1. Since WF~ is a unitary operator  with unit deter- 
minant, its eigenvalues are of the form e +~:L, and the condition for qs(co) to 
be nonzero is 

lim (~L • = 0 m o d  2~ (21a) 
L ~  

Defining xL = �89 Tr  WFL = COS ~L, we get 

lim (xL - cos ~oFL) = 0 (21b) 
L ~ o o  

The traces of the Fibonacci concatenated matrices WFL are known to 
obey the recursion relation (a3-~5) 

XL+2+XL I = 2XL+lXL (22a) 

This relation has an invariant 

I=xZc+l+x~+x~ I--2XL+lXLXL 1--1 (22b) 

It can be easily seen that, if xL is asymptotic to cos coFL, the invariant I 
must converge to zero. Hence, it must be strictly zero, for any L. 

The two evolution operators U0 and U~ used for the construction of 
WFL can be represented as 

Uo = exp(hs �9 ko), U1 = exp(i~ �9 kl)  (23a) 

where ~ is the vector of Pauli matrices and k o and kl are three-dimensional 
vectors making an angle 0. 

In terms of k o, kl ,  and 0, the invariant I takes the form 

I =  - s i n  2 0 sin 2 ko sin 2 kl (23b) 

which vanishes only for trivial cases. Hence, xr cannot be asymptotic 
to cos coFL, and the equality in (20d) can be satisfied only for ~b(co)= 0. 
This proves that the Fourier transform (quasi-energy spectrum) ~(co) 
generically does not contain any delta function, and therefore G(t) is not 
quasiperiodic. 

For  certain values of the parameters, the trace map (22a) has cycles 
and the evolution operator  taken at the Fibonacci numbers forms a 
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periodic sequence. However, the system is still chaotic, since the evolution 
operator taken at all integer times is neither periodic nor even 
quasiperiodic. Hence these cases are not exceptions to our general proof. 

In analogy with previous work on electron and phonon spectra (see 
refs. 13-15), we may suggest that the spectrum of (~(~o) is generically purely 
singular continuous. Evidence in favor of this statement comes from the 
following numerical studies. These have been performed for a special class 
of perturbation potentials g(t), namely "kicks," i.e., delta functions at 
integer times. With the notation of Eq. (11), we have 7( t )=~( t ) ,  and the 
coupling constants a0, al are chosen as follows: 

ao = - r a ;  al = a (24) 

in such a way that the sequence av(k) has zero average. The invariant I of 
the trace map (22b) then reads 

I =  - s i n  2 E sinZ(zZa) (25) 

It follows from the above analysis that the quasi-energy spectrum is not 
made of delta peaks, except in degenerate cases, where either E or  "cZa iS an 
integer multiple of 7r. 

Our numerical investigations have been mainly concerned with the 
polarization of the system. If 

denotes the state vector, this quantity is defined by 

Px = ~,* ~,_ + 4,*_ ~+ 

Py=i(~*t~+-~9*r ) 
P z : f f * ~ +  -ff*-ff_ 

(26) 

These three components are not independent, since the condition p 2 =  1 is 
preserved by the dynamics for any spin-l/2 system. Hence, the polarization 
is advantageously described by two polar angles, according to 

Px = sin 0 cos ~p 

By = sin 0 sin ~o (27) 

Pz = cos 0 

For  the "kicking" perturbation defined above, the polarization jumps in a 
discontinuous way at integer times and remains constant between two con- 
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secutive integer times. Let P(n) denote its value for n < t < n + 1. Our three 
numerical approaches (Poincar6 sections, polarization fluctuation, and 
nature of the quasi-energy spectrum) have been concerned with this 
sequence P(n). The initial condition Or=0 = (~) is assumed throughout the 
following. 

4. POINCARE SECTIONS 

Consider the integrated amplitude of the perturbation up to time T 

T 

S r  = ~, av(n~ (28) 
n = l  

If the sequence a~(n~ had zero average and was periodic, with period 2, Sr 
would vanish when T is a multiple of 2. Hence, it seems reasonable to 
define the quasiperiods of the present perturbation as the times T such that 
[Sr[<ae, e being some very small number. Figure 1 presents some 
Poincar6 sections obtained by plotting the values of the polar angles 0 and 
q~ for the times T defined above. The value e = 10 -3 selects 784 times such 
that T~< 10 6. The plots correspond to different values of E at a fixed generic 
perturbation strength a = 1. Since the evolution is not quasiperiodic, it is 
expected that these plots are never curves, but rather that the data present 
some intrinsic scatter. This is indeed what can be seen. For  small E, there is 
a very long crossover time before the scattering shows up. The first plot 
( E =  10 3) indeed hardly looks different from a curve at the time scale 
t =  10 6. It can be argued, in analogy with what has been shown in the 
context of harmonic excitations in quasicrystals, (a6) that the crossover time 
blows up exponentially as E, or a, goes to zero. 

5. POLARIZATION FLUCTUATION 

Let us restrict the discussion to systems in which none of the values 
~ = +1 or ~r z-- - 1  is preferred. This is indeed the case in the present 
example. We then define the polarization fluctuation by the formula 

T 

S t =  ~ Pz(n) (29) 
n = l  

Since the average polarization Xr /T  vanishes for T--, oe, S r grows less 
rapidly than T. It is clear that the fluctuation will be bounded in the case of 
a periodic evolution. This will remain true for a smooth enough 
quasiperiodic evolution. Conversely, with a random driving force, the fluc- 
tuation is expected to increase typically as T 1/2. In ref. 17 it has been shown 
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Fig. 1. Plots of Poincar6 sections, defined in the text, in the plane of the polar angles, for 
a =  1 and different values of E: (a) E =  0.001, (b) E=0.01,  (c) E=0.05,  and (d) E=0.1 .  For 
each plot, ~0 varies from - ~  to n along the abscissa axis and 0 from 0 to n along the ordinate 
axis. 
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5- -  

-10 

I i I I I I I I I 

1 I I I 1 1 I I i 
ZIO 3 1,.103 6.103 8303 10 ~ 

Fig. 2. Plot of the polarization fluctuation, defined in Eq. (29), up to T= 10 4, for E= ~/3 
and a = 3rc/5. 

that the density fluctuation, analogous to ST, of the atomic positions of a 
quasiperiodic chain of atoms generated by a circle map typically exhibits a 
logarithmic divergence. This rather subtle effect originates in number 
theory. In the present case, such an exact treatment is not possible. We 
have computed the fluctuation X r  numerically for several values of E and 
a. Although the data are far from having the clear-cut scaling behavior of 
ref. 17, they are compatible with a divergence of a logarithmic type in the 
polarization fluctuation. Figure 2 shows a plot of Z" r up to T =  10 4, for 
typical values of the parameters. The maximal and minimal fluctuations are 
still of the order of a few units on that time scale. 

6 .  N A T U R E  O F  T H E  Q U A S I - E N E R G Y  S P E C T R U M  

It has been shown that the quasi-energy spectrum (Fourier transform 
of the evolution operator) is not made up of delta peaks for generic values 
of the parameters. In other words, this spectrum is continuous. We now 
address the question of whether it is absolutely continuous (with a smooth 
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density) or singular continuous. We use a numerical method introduced in 
ref. 18. In order to avoid dealing with matrix quantities, we restrict our- 
selves to the Fourier transform of the polarization Pz. We introduce the 
Fourier amplitude 

T 

G r ( m ) =  ~ ei"~Pz(n ) (30 )  
n = l  

and the associated intensity J r ( m ) =  (I/T)]Gv(m)[ 2. The key observation 
is that this last quantity converges, as T ~  ~ ,  to a function J (m)  in the 
case of an absolutely continuous spectrum, and to a more singular object 
(generalized function, distribution) if the spectrum is singular continuous. 
Hence, the integrals 

J 2(m) (32) d m  
I t =  

0./,~ 

I I I 

0.3 

0.2 

0.1 

0 1  I I I 
0 0.5 1 1.5 

a / (~2~r) 

Fig. 3. Plot of the exponent /~ of the scaling law (32), extracted from data up to T =  1600, 
v e r s u s  a/zZTr, for E = n/3. The scatter between the different curves gives a hint on the accuracy 
of the law (32) in the range of values of T that we have explored. The steep maxima at integer 
values of the abscissa correspond to degenerate models, where the value /~= 1/2, up to a 
logarithmic correction, is expected. 
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have a nonvanishing T-* oo limit if, and only if, the spectrum has an 
absolutely continuous part. Conversely, it can be shown that I r  ~ T-2/2 for 
a periodic, or smooth quasiperiodic, evolution. An intermediate kind of 
behavior, such as 

I r ~ T  .~ with 0 < f i < 1 / 2  (32) 

can be expected in the case of a singular continuous spectrum, and has 
indeed been observed in ref. 18, in the case of the spatial Fourier transform 
of some one-dimensional atomic structure. We have computed the integrals 
IT for numerous values of the perturbation strength a at fixed E = ~/3, and 
extracted from the data in the range 100 ~< T~< 1600 an effective exponent fl 
according to Eq. (32). Figure 3 shows these approximate values of fl 
plotted versus a/~2m The different curves, obtained by using slightly 
different fitting procedures and discarding or not the data corresponding to 
the smaller values of T, coincide in a satisfactory way, suggesting the 
validity of the power law (32). The integer values of the abscissa a/~2~ 
correspond to steep maxima for the exponent ft. Indeed, the invariant I of 
Eq. (23b), given by Eq. (25) in the present case, vanishes for such values of 
a, which correspond to a quasiperiodic evolution, and yield fl = 1/2. 

7. C O N C L U S I O N  

To summarize, we have shown analytically that a two-level quantum 
system driven by a Fibonacci-like quasiperiodic perturbation generically 
does not have a quasiperiodic time evolution. Three different numerical 
investigations suggest an intermediate kind of evolution between 
quasiperiodic and chaotic, characterized by fuzzy Poincar6 sections, a 
slowly growing polarization fluctuation, and a singular continuous 
quasi-energy spectrum. 
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